Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(6): 2645-2657, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342721

RESUMO

The phenomenon of retinal vein pulsation is still not a deeply understood topic in retinal hemodynamics. In this paper, we present a novel hardware solution for recording retinal video sequences and physiological signals using synchronized acquisition, we apply the photoplethysmographic principle for the semi-automatic processing of retinal video sequences and we analyse the timing of the vein collapse within the cardiac cycle using of an electrocardiographic signal (ECG). We measured the left eyes of healthy subjects and determined the phases of vein collapse within the cardiac cycle using a principle of photoplethysmography and a semi-automatic image processing approach. We found that the time to vein collapse (Tvc) is between 60 ms and 220 ms after the R-wave of the ECG signal, which corresponds to 6% to 28% of the cardiac cycle. We found no correlation between Tvc and the duration of the cardiac cycle and only a weak correlation between Tvc and age (0.37, p = 0.20), and Tvc and systolic blood pressure (-0.33, p = 0.25). The Tvc values are comparable to those of previously published papers and can contribute to the studies that analyze vein pulsations.

2.
Cell Commun Signal ; 21(1): 120, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226246

RESUMO

Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. Many studies suggest that cancer cells release higher amounts of EVs exposing phosphatidylserine (PS) at the surface. There are lots of interconnections between EVs biogenesis and autophagy machinery. Modulation of autophagy can probably affect not only the quantity of EVs but also their content, which can deeply influence the resulting pro-tumourigenic or anticancer effect of autophagy modulators. In this study, we found that autophagy modulators autophinib, CPD18, EACC, bafilomycin A1 (BAFA1), 3-hydroxychloroquine (HCQ), rapamycin, NVP-BEZ235, Torin1, and starvation significantly alter the composition of the protein content of phosphatidylserine-positive EVs (PS-EVs) produced by cancer cells. The greatest impact had HCQ, BAFA1, CPD18, and starvation. The most abundant proteins in PS-EVs were proteins typical for extracellular exosomes, cytosol, cytoplasm, and cell surface involved in cell adhesion and angiogenesis. PS-EVs protein content involved mitochondrial proteins and signalling molecules such as SQSTM1 and TGFß1 pro-protein. Interestingly, PS-EVs contained no commonly determined cytokines, such as IL-6, IL-8, GRO-α, MCP-1, RANTES, and GM-CSF, which indicates that secretion of these cytokines is not predominantly mediated through PS-EVs. Nevertheless, the altered protein content of PS-EVs can still participate in the modulation of the fibroblast metabolism and phenotype as p21 was accumulated in fibroblasts influenced by EVs derived from CPD18-treated FaDu cells. The altered protein content of PS-EVs (data are available via ProteomeXchange with identifier PXD037164) also provides information about the cellular compartments and processes that are affected by the applied autophagy modulators. Video Abstract.


Assuntos
Exossomos , Vesículas Extracelulares , Fosfatidilserinas , Autofagia , Citocinas
3.
Eur J Hum Genet ; 31(7): 744-748, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36755104

RESUMO

In 2022, we celebrated 200 years since the birth of Johann Gregor Mendel. Although his contributions to science went unrecognized during his lifetime, Mendel not only described the principles of monogenic inheritance but also pioneered the modern way of doing science based on precise experimental data acquisition and evaluation. Novel statistical and algorithmic approaches are now at the center of scientific work, showing that work that is considered marginal in one era can become a mainstream research approach in the next era. The onset of data-driven science caused a shift from hypothesis-testing to hypothesis-generating approaches in science. Mendel is remembered here as a promoter of this approach, and the benefits of big data and statistical approaches are discussed.


Assuntos
Genética , Imaginação , Humanos , Regiões Promotoras Genéticas , Projetos de Pesquisa
5.
Biomed Pharmacother ; 154: 113582, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055111

RESUMO

Mitochondria generate energy and building blocks required for cellular growth and function. The notion that mitochondria are not involved in the cancer growth has been challenged in recent years together with the emerging idea of mitochondria as a promising therapeutic target for oncologic diseases. Pentamethinium salts, cyan dyes with positively charged nitrogen on the benzothiazole or indole part of the molecule, were originally designed as mitochondrial probes. In this study, we show that pentamethinium salts have a strong effect on mitochondria, suppressing cancer cell proliferation and migration. This is likely linked to the strong inhibitory effect of the salts on dihydroorotate dehydrogenase (DHODH)-dependent respiration that has a key role in the de novo pyrimidine synthesis pathway. We also show that pentamethinium salts cause oxidative stress, redistribution of mitochondria, and a decrease in mitochondria mass. In conclusion, pentamethinium salts present novel anti-cancer agents worthy of further studies.


Assuntos
Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Respiração , Sais/metabolismo
7.
Cancers (Basel) ; 14(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35565415

RESUMO

Head and neck squamous cell carcinomas (HNSCC) belong among severe and highly complex malignant diseases showing a high level of heterogeneity and consequently also a variance in therapeutic response, regardless of clinical stage. Our study implies that the progression of HNSCC may be supported by cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) and the heterogeneity of this disease may lie in the level of cooperation between CAFs and epithelial cancer cells, as communication between CAFs and epithelial cancer cells seems to be a key factor for the sustained growth of the tumour mass. In this study, we investigated how CAFs derived from tumours of different mRNA subtypes influence the proliferation of cancer cells and their metabolic and biomechanical reprogramming. We also investigated the clinicopathological significance of the expression of these metabolism-related genes in tissue samples of HNSCC patients to identify a possible gene signature typical for HNSCC progression. We found that the right kind of cooperation between cancer cells and CAFs is needed for tumour growth and progression, and only specific mRNA subtypes can support the growth of primary cancer cells or metastases. Specifically, during coculture, cancer cell colony supporting effect and effect of CAFs on cell stiffness of cancer cells are driven by the mRNA subtype of the tumour from which the CAFs are derived. The degree of colony-forming support is reflected in cancer cell glycolysis levels and lactate shuttle-related transporters.

8.
J Biophotonics ; 15(9): e202200094, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35604408

RESUMO

Multispectral imaging is used in various applications including astronomy, industry and agriculture. In retinal imaging, the single-shot multispectral image stack is typically acquired and analyzed. This multispectral analysis can provide information on various structural or metabolic properties. This paper describes the multispectral improvement of a video-ophthalmoscope, which can acquire retinal video sequences of the optic nerve head and peripapillary area using various spectral light illumination. The description of the multispectral video imaging is provided and several applications are described. These applications include multispectral retinal photoplethysmography, visualization of spontaneous vein pulsation and multispectral RGB image generation.


Assuntos
Iluminação , Disco Óptico , Tecnologia de Fibra Óptica , Oftalmoscópios , Oftalmoscopia/métodos , Disco Óptico/diagnóstico por imagem , Retina/diagnóstico por imagem , Retina/fisiologia
9.
Biophys J ; 121(9): 1632-1642, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35390297

RESUMO

Cell viscoelastic properties are affected by the cell cycle, differentiation, and pathological processes such as malignant transformation. Therefore, evaluation of the mechanical properties of the cells proved to be an approach to obtaining information on the functional state of the cells. Most of the currently used methods for cell mechanophenotyping are limited by low robustness or the need for highly expert operation. In this paper, the system and method for viscoelasticity measurement using shear stress induction by fluid flow is described and tested. Quantitative phase imaging (QPI) is used for image acquisition because this technique enables one to quantify optical path length delays introduced by the sample, thus providing a label-free objective measure of morphology and dynamics. Viscosity and elasticity determination were refined using a new approach based on the linear system model and parametric deconvolution. The proposed method allows high-throughput measurements during live-cell experiments and even through a time lapse, whereby we demonstrated the possibility of simultaneous extraction of shear modulus, viscosity, cell morphology, and QPI-derived cell parameters such as circularity or cell mass. Additionally, the proposed method provides a simple approach to measure cell refractive index with the same setup, which is required for reliable cell height measurement with QPI, an essential parameter for viscoelasticity calculation. Reliability of the proposed viscoelasticity measurement system was tested in several experiments including cell types of different Young/shear modulus and treatment with cytochalasin D or docetaxel, and an agreement with atomic force microscopy was observed. The applicability of the proposed approach was also confirmed by a time-lapse experiment with cytochalasin D washout, whereby an increase of stiffness corresponded to actin repolymerization in time.


Assuntos
Neoplasias , Citocalasina D , Módulo de Elasticidade , Elasticidade , Reprodutibilidade dos Testes , Viscosidade
10.
Pharmaceutics ; 14(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057061

RESUMO

(1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with 60Co γ-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against γH2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of γH2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of γH2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of γH2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of γH2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley's distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent γH2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired γH2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy).

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 439-442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891327

RESUMO

In this contribution, we focused on optimising a dynamic flow-based shear stress system to achieve a reliable platform for cell shear modulus (stiffness) and viscosity assessment using quantitative phase imaging. The estimation of cell viscoelastic properties is influenced by distortion of the shear stress waveform, which is caused by the properties of the flow system components (i.e., syringe, flow chamber and tubing). We observed that these components have a significant influence on the measured cell viscoelastic characteristics. To suppress this effect, we applied a correction method utilizing parametric deconvolution of the flow system's optimized impulse response. Achieved results were compared with the direct fitting of the Kelvin-Voigt viscoelastic model and the basic steady-state model. The results showed that our novel parametric deconvolution approach is more robust and provides a more reliable estimation of viscosity with respect to changes in the syringe's compliance compared to Kelvin-Voigt model.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias , Estresse Mecânico , Viscosidade
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2741-2744, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891817

RESUMO

This paper focuses on the analysis of image sequences acquired during fast photobleaching using a standard wide-field microscope. We show that the photobleaching rate estimated for each pixel is not constant for the whole field of view, but it provides a new spatially variant parametric image related to the cell structure and diffusion of fluorophores. We also provide an alternative way to estimate a pixel-wise photobleaching rate with significantly less computation time than exponential model fitting.Clinical Relevance- This method provides an additional way how fluorescence photobleaching might be used for increasing the image contrast.


Assuntos
Corantes Fluorescentes , Difusão , Microscopia de Fluorescência , Fotodegradação
13.
Biomed Opt Express ; 12(10): 6514-6528, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745753

RESUMO

In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining.

14.
Biomed Res Int ; 2021: 6800294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746306

RESUMO

The main dose-limiting side effect of cisplatin is nephrotoxicity. The utilization of cisplatin is an issue of balancing tumour toxicity versus platinum-induced nephrotoxicity. In this study, we focused on intraorgan distribution of common essential trace elements zinc, copper, and iron in healthy mouse kidneys and distribution of platinum after cisplatin treatment. Renal distribution in 12 nontreated Nu-Nu mice (males) was assessed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Furthermore, 9 Nu-Nu mice were treated with cisplatin. The order of elements concentration in kidneys was as follows: Fe > Zn > Cu. All three metals showed the higher concentrations at the cortex and medulla (28.60, 3.35, and 93.83 µg/g for Zn, Cu, and Fe, respectively) and lower concentration at the pelvis and the urinary tract (20.20, 1.93, and 62.48 µg/g for Zn, Cu, and Fe, respectively). No statistically significant difference between cortex and medulla was observed for these elements. After platinum treatment, the concentration of platinum in kidneys was enhanced more than 60-times, p < 0.001. Platinum significantly showed the highest accumulation in cortex (2.11 µg/g) with a gradient distribution. Platinum was less accumulated in medulla and pelvis than in cortex, and the lowest accumulation occurred in the urinary tract (1.13 µg/g). Image processing has been successfully utilized to colocalize metal distribution using LA-ICP-MS and histological samples images.


Assuntos
Cisplatino/toxicidade , Rim/metabolismo , Rim/patologia , Animais , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Cobre/análise , Humanos , Ferro/análise , Rim/efeitos dos fármacos , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Nus , Células PC-3 , Platina/análise , Análise Espectral/métodos , Zinco/análise
15.
ACS Appl Mater Interfaces ; 13(27): 31355-31370, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34218662

RESUMO

The development of cancer resistance continues to represent a bottleneck of cancer therapy. It is one of the leading factors preventing drugs to exhibit their full therapeutic potential. Consequently, it reduces the efficacy of anticancer therapy and causes the survival rate of therapy-resistant patients to be far from satisfactory. Here, an emerging strategy for overcoming drug resistance is proposed employing a novel two-dimensional (2D) nanomaterial polysiloxane (PSX). We have reported on the synthesis of PSX nanosheets (PSX NSs) and proved that they have favorable properties for biomedical applications. PSX NSs evinced unprecedented cytocompatibility up to the concentration of 300 µg/mL, while inducing very low level of red blood cell hemolysis and were found to be highly effective for anticancer drug binding. PSX NSs enhanced the efficacy of the anticancer drug doxorubicin (DOX) by around 27.8-43.4% on average and, interestingly, were found to be especially effective in the therapy of drug-resistant tumors, improving the effectiveness of up to 52%. Fluorescence microscopy revealed improved retention of DOX within the drug-resistant cells when bound on PSX NSs. DOX bound on the surface of PSX NSs, i.e., PSX@DOX, improved, in general, the DOX cytotoxicity in vitro. More importantly, PSX@DOX reduced the growth of DOX-resistant tumors in vivo with 3.5 times better average efficiency than the free drug. Altogether, this paper represents an introduction of a new 2D nanomaterial derived from silicane and pioneers its biomedical application. As advances in the field of material synthesis are rapidly progressing, novel 2D nanomaterials with improved properties are being synthesized and await thorough exploration. Our findings further provide a better understanding of the mechanisms involved in the cancer resistance and can promote the development of a precise cancer therapy.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Siloxanas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Feminino , Humanos , Teste de Materiais , Camundongos , Nanoestruturas/química , Siloxanas/química
16.
Comput Struct Biotechnol J ; 19: 6465-6480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976305

RESUMO

DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.

17.
Environ Sci Pollut Res Int ; 28(5): 6018-6029, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32981019

RESUMO

Titanium-based alloys have established a crucial role in implantology. As material deteriorates overtime, nanoparticles of TiO2 and Ni are released. This study is focused on the impact of TiO2 and Ni nanoparticles with size of 100 nm on cytoskeletal and adhesive changes in human physiological and osteoarthritic osteoblasts. The impact of nanoparticles with concentration of 1.5 ng/mL on actin and tubulin expression and gene expression of FAK and ICAM-1 was studied. The cell size and actin expression of physiological osteoblasts decreased in presence of Ni nanoparticles, while TiO2 nanoparticles caused increase in cell size and actin expression. Both cell lines expressed more FAK as a response to TiO2 nanoparticles. ICAM-1 gene was overexpressed in both cell lines as a reaction to both types of nanoparticles. The presented study shows a crucial role of Ni and TiO2 nanoparticles in human osteoblast cytoskeletal and adhesive changes, especially connected with the osteoarthritic cells. Graphical abstract.


Assuntos
Nanopartículas , Titânio , Adesão Celular , Citoesqueleto , Humanos , Osteoblastos
18.
Artigo em Inglês | MEDLINE | ID: mdl-33229424

RESUMO

Emerging flaviviruses are causative agents of severe and life-threatening diseases, against which no approved therapies are available. Among the nucleoside analogues, which represent a promising group of potentially therapeutic compounds, fluorine-substituted nucleosides are characterized by unique structural and functional properties. Despite having first been synthesized almost 5 decades ago, they still offer new therapeutic opportunities as inhibitors of essential viral or cellular enzymes active in nucleic acid replication/transcription or nucleoside/nucleotide metabolism. Here, we report evaluation of the antiflaviviral activity of 28 nucleoside analogues, each modified with a fluoro substituent at different positions of the ribose ring and/or heterocyclic nucleobase. Our antiviral screening revealed that 3'-deoxy-3'-fluoroadenosine exerted a low-micromolar antiviral effect against tick-borne encephalitis virus (TBEV), Zika virus, and West Nile virus (WNV) (EC50 values from 1.1 ± 0.1 µM to 4.7 ± 1.5 µM), which was manifested in host cell lines of neural and extraneural origin. The compound did not display any measurable cytotoxicity up to concentrations of 25 µM but had an observable cytostatic effect, resulting in suppression of cell proliferation at concentrations of >12.5 µM. Novel approaches based on quantitative phase imaging using holographic microscopy were developed for advanced characterization of antiviral and cytotoxic profiles of 3'-deoxy-3'-fluoroadenosine in vitro In addition to its antiviral activity in cell cultures, 3'-deoxy-3'-fluoroadenosine was active in vivo in mouse models of TBEV and WNV infection. Our results demonstrate that fluoro-modified nucleosides represent a group of bioactive molecules with excellent potential to serve as prospective broad-spectrum antivirals in antiviral research and drug development.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecção por Zika virus , Zika virus , Animais , Antivirais/farmacologia , Desoxiadenosinas/farmacologia , Camundongos , Estudos Prospectivos , Replicação Viral
19.
Sci Rep ; 10(1): 1566, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005874

RESUMO

Cell viability and cytotoxicity assays are highly important for drug screening and cytotoxicity tests of antineoplastic or other therapeutic drugs. Even though biochemical-based tests are very helpful to obtain preliminary preview, their results should be confirmed by methods based on direct cell death assessment. In this study, time-dependent changes in quantitative phase-based parameters during cell death were determined and methodology useable for rapid and label-free assessment of direct cell death was introduced. The goal of our study was distinction between apoptosis and primary lytic cell death based on morphologic features. We have distinguished the lytic and non-lytic type of cell death according to their end-point features (Dance of Death typical for apoptosis versus swelling and membrane rupture typical for all kinds of necrosis common for necroptosis, pyroptosis, ferroptosis and accidental cell death). Our method utilizes Quantitative Phase Imaging (QPI) which enables the time-lapse observation of subtle changes in cell mass distribution. According to our results, morphological and dynamical features extracted from QPI micrographs are suitable for cell death detection (76% accuracy in comparison with manual annotation). Furthermore, based on QPI data alone and machine learning, we were able to classify typical dynamical changes of cell morphology during both caspase 3,7-dependent and -independent cell death subroutines. The main parameters used for label-free detection of these cell death modalities were cell density (pg/pixel) and average intensity change of cell pixels further designated as Cell Dynamic Score (CDS). To the best of our knowledge, this is the first study introducing CDS and cell density as a parameter typical for individual cell death subroutines with prediction accuracy 75.4% for caspase 3,7-dependent and -independent cell death.


Assuntos
Apoptose , Morte Celular , Algoritmos , Apoptose/efeitos dos fármacos , Contagem de Células , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células/ultraestrutura , Células Cultivadas , Humanos , Modelos Estatísticos , Imagem Óptica/métodos , Fatores de Tempo , Imagem com Lapso de Tempo/métodos
20.
Cas Lek Cesk ; 159(7-8): 268-274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33445932

RESUMO

In order to maximize post-therapeutic quality of life, radio(chemo)therapy becomes preferred over surgery in head-and-neck tumor (HNT) treatment. However, the therapy selection is only based on the clinical experience and patient's preferences as the radiosensitivity markers remain unknown. New possibilities of deciding on the best primary therapy, moving us towards personalized medicine based on quantifiable biomarkers, have been opened by studies on DNA radiation damage and repair in individual patients tumors. Together with the importance of radiotherapy in HNT oncology, we discuss here our preliminary results revealing the existence of several HNT groups with respect to genome stability and repair ability of tumor cells after irradiation. Monitoring of the formation and disappearance of γH2AX/53BP1 foci in tumor cell primo-cultures derived from individual patients suggests that DNA repair capacity of the identified groups correlates with the tumor cell radiosensitivity. Our findings thus improve understanding of HNT biology; nevertheless, the relationship between the repair groups and in vivo response of tumors to radiotherapy must be further studied. Since most HNTs do not suffer from repair defects, although their viability varies after irradiation, pre-therapeutic tests covering the full spectrum of HNT radiosensitivity causes will require the use of a combination of multiple, still undiscovered biomarkers.


Assuntos
Neoplasias de Cabeça e Pescoço , Histonas , Dano ao DNA , Reparo do DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Histonas/genética , Histonas/metabolismo , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...